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Milnor strange nonchaotic attractor with complex basin of attraction
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The transcritical blowout bifurcation of a quasiperiodic torus on an invariant subspace is studied in this
paper. We found that the strange nonchaotic attra@blA) beyond the blowout bifurcation is only a weak
attractor in the sense of Milnor. This is different from the popularly studied case where the Milnor attractor is
a chaotic one with a riddled basin of attraction. Characters of this Milnor SNA and the influence of a random
noise are studied.
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Recently, systems possessing an invariant subsppg&e  than necessary for the existence of an ISS. For example, in
attracted a great deal of research intefdst7]. The exis- the case of synchronization of coupled units, symmetric cou-
tence of an ISS requires that a system has some kind d¢fling is usually used1,7] while the use of identical units is
symmetry. A situation where symmetry can appear naturalllready enough to produce an ISS, independently on the cou-
is the synchronization of coupled identical unfts. Syn-  Pling method. In this paper, we address the situation where
chronization phenomena have been extensively studied in tH8€ unnecessary symmetry is released. To illustrate our find-
context of laser dynamics, electronic circuits, chemical andnd, We use a simple two-dimensional map which possesses
biological systems, and secure communication. an ISS while the Whole system is asymmetric wlth_respect to

For systems possessing an ISS, a central question is th@is ISS. Due to this asymmetry, the quasiperiodic torus in
transverse stability of the ISS, i.e., whether an orbit startingh® 1SS loses its transverse stability through a transcritical
from the vicinity of the ISS will finally approach it or escape lowout bifurcation. We found that thg basin of attraction of
from it. A quantity measuring this stability is the transversethe SNA beyond the blowout bifurcation can be penetrated
Lyapunov exponentTLE), which measures the growth rate Py & dense set of points belonging to the bas[n of another
of transverse perturbations. If the TLE is negative, a trans@ttractor. The SNA is a different type of weak Milnor attrac-
verse perturbation will decrease gradually and the 1SS i40F in contrast to the case previously reporf&]. Charac-
transversely stable. Otherwise, it is unstable. The problerristics of the basin of attraction of the Milnor SNA and the
turns out to be quite complex when there is a chaotic attracéffect of noise are also studied. .
tor on the 1SY6] due to the fact that there are infinite num-  We consider the following general class of dynamical sys-
ber of unstable periodic orbittJPO’S embedded in if8].  tems popularly used in the literatufe,10],

With a change of some parameter, e.g., the coupling strength

for coupled systems, UPQO’s become transversely unstable at Xnt1=F(Xn),
different values of the parameter. The point where the least 1)
stable UPO becomes unstable is called a riddling bifurcation Yn+1=F(Xn,P)G(Yn),

[7]. The moment when the whole chaotic attractor becomes ) o )
transversely unstable is called the blowout bifurcafish In wheref(x) is a map that has a quasiperiodic torus and
between the riddling and blowout bifurcation, the attractorthe control parameter. In previous worlks10], the function
on the ISS is only a weak attractor in the sense of MilnorG(y) on the right hand side of the second equation in(&g.
[3,9], i.e., its strength is zero while it does attract a set ofiS 0dd, i.., it has the symmety(—y)=—G(y). This sym-
finite measure in the phase space. This is a typical situatiofetry is appropriate for the symmetric coupling in coupled
where a Milnor attractor with zero strength is dominant. ~ Systems[7]. Obviously, this symmetry is not necessary for
In a recent papel0], Yalginkaya and Lai studied a situ- the presence of the ISg=0. Thus we would like to use a
ation where in the ISS there is a quasiperiodic torus insteafinction G(y) which is neitherevennor odd to release this
of the chaotic attractor. They showed that the loss of théymmetry. For simplicity and easiness of illustration, the fol-
transverse stability of the torus can lead to the birth of dowing version of Eq(1) is used:
strange nonchaotic attract@NA) [11]. SNA’s are attractors

which are geometrically strange, i.e., having a fractal struc- Xn+1=Xn T @ (mod ),
ture, while the largest Lyapunov exponent is nonpositive, 5 2
i.e., having no sensitive dependence on initial conditions. Yn+1=P[COK2 7X,)|yn(1+ay,—byp),

However, no riddled basin of attraction or Milnor attractor

was observed prior to the blowout bifurcation in the study ofwherep, a, andb are positive real constants. For any choice
Yalgcinkaya and Lai10]. In this paper, we will go further of the control parameters, we hayg=0 for n>1 if y,
along this direction to study thiganscritical blowout bifur- =0, i.e.,y,=0 is an ISS of the whole system. On this ISS,
cation of a quasiperiodic torus, while the case studied byhe system possesses a quasiperiodic torus from the circle
Yalginkaya and Lai is a period-doubling one. The motivationmap f(x) =x+ w(mod 1). Throughout this paper, valuas

for the current work is the following: In previous studies =0.5 andb=0.3 are kept fixed, ang is used as a control
[1,3-7,1Q, the systems used are of much stronger symmetrparameter. Using other valuesaandb can lead to different
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with our argument that it is a strange attractor. The basin of
attraction turns out to be quite complex, and the following
characters can be seen from the plot: First, the SNA does
attract a set of finite measure in the phase space. The bulk
blank region in the negative half plane containing the attrac-
tor is part of the basin. Second, a set of points of finite
measure belonging to the basin of the attractor at infinity
penetrates the ISS, which is a part of the boundary of the
FIG. 1. The variation ofA and Ay vs p. SNA. This can be clearly seen from blowing up a part of the
basin in the vicinity of the ISS thiupper frame in Fig. @)].
scenarios from the case reported below. Details about thesgis expected that a certain perturbation of arbitrarily small
scenarios will be reported elsewhere. o strength can kick orbits out of the basin of the SNA, i.e., it is
The TLE of the quasiperiodic torus on the ISS is given byg wilnor attractor with zero strength. This is different from
A= fgIn|pcos(2m)|dx=In(p/2). The blowout bifurcation the previously studied ca§8] where a chaotic attractor with
occurs asAt=0, which defines the critical value for the riddled basin is argued to be a Milnor one. Furthermore,
control parametep.=2. It has been argued that beyond thewhen there is a chaotic attractor on the ISS, the difference in
blowout bifurcation{ 10], there is the possibility that the TLE transverse stabilities of UPO’s leads to a riddled basin and a
A+ is positive while the largest nontrivial Lyapunov expo- Milnor attractor[6]. For the current case, the invariant mea-
nentA, of they subsystem is negative. Results of the nu-sure is unique for orbits on the quasiperiodic torus in the ISS.
merical calculation for two Lyapunov exponents in our sys-Thus the mechanisms leading to the Milnor attractor should
tem are shown in Fig. 1. The negative largest nontrivialbe different. Third, in the basin of attraction of the SNA
Lyapunov exponenf\, slightly beyond the blowout bifur- there are some bands where all points go finally to the SNA
cation, warrants that the attractor is nonchaotic. Following(or infinity). This means that the basin of attraction for the
the argument in Ref.11], we can show that it is also geo- SNA is not a riddled one in the original sense of Alexander
metrically strange: It is obvious that beyond the blowoutet al.[3]. Fourth, as the ISS is approached, the scale of bands
bifurcation, the ISSy=0 is no longer an attractor, and the becomes smaller and smaller and eventually goes to zero. In
new attraction must include some points off the ISS. On thean arbitrarily small region which contains the ISS, there is
other hand, pointsx=0.25y=0) and k=0.75y=0) must  always a set of points of finite measure going to infinity. In
be on the attractor, since the term cas{Ris zero for these other words, the degree of mixing of the two basins is inho-
points. Further forward iterations of these points should alsenogeneous, and it becomes higher and higher as the ISS is
be on the attractor. Therefore, the attractor contains pointapproachedsee Fig. 2o)]. Finally, all points in the vicinity
bothoff andonthe ISSy=0. Due to the ergodicity, two sets of the ISS will first escape due to the local instability since
of points are dense in thedirection and interwoven together the TLE is now positive. Some of them will be mapped to
completely. This, together with the continuity of the attrac-the SNA in the negative half plane due to the global nonlin-
tor, leads to its strangeness. earity of the system. This is different from the case of a
The attractor and its basin of attraction wifh=2.3 is  riddled basin where a set of finite measure converges to the
shown in Fig. 2, where points escaping to infinity are de-ISS monotonically12].
noted by black dots while the basin of the SNA is left blank. Effect of noiseSince fluctuations and perturbations are
Due to the fact that the system is asymmetric with respect tinevitable in real experiments and technical applications, it is
the ISS, the SNA resides only at the negative half plane, anth general important to study the influence of noise. In our
the ISS is a part of its boundary. In R¢L0], however, the system, the strength of the Milnor SNA is zero, and the ef-
SNA is on both sides of the ISS. It can be seen that thdect of a perturbation will be significant. In principle, pertur-
attractor approaches the I§S 0 from time to time, and has bations of arbitrarily small strength can kick orbits out of the
cusp singularities at a dense set of points. This is consisteftasin of the Milnor SNA. However, with a decreasing
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FIG. 2. (a) The SNA and the blowup of part
of its basin withp=2.3. (b) The basin at the
positive half plane.
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FIG. 3. The normalized number of poirt{ 7) left after a tran- FIG. 5. Points escaping within a transient of 50 for p=2.3
sient7. The inset giveg ) 1~e. ande=10“.

strength of the perturbation, one should wait longer anctannot “feel” the noise before they escape to infinjity4].
longer times to see the escaping. To characterize the temp@his contributes to the universal quickly decreasing part at
ral behavior of this noise-induced escaping, we first calculatgmall r in p(7). The first group will initally go to the vicin-
the quantityN(7), which is the number of orbits left on the ity of the Milnor SNA, and wander there for a long time
attractor after a transient time. Usually it has the form Dpefore escaping. Since the noise strengtis small, it can
N(7)~exp(—7/(7)) where(r) is the mean value of the es- only have a significant influence on orbits entering the region
cape time[13]. The variation of(7) on € is shown in the |y|<e, say the one in the first group, since the SNA ap-
inset of Fig. 3. A fit of the data givegr)~e 1. proaches the ISS from time to time. This forms the slowly
We also calculate the probability density functi®®DF)  decreasing noise-dependent part at largeTo check the
p(7) for the escape time distribution. From the plot in Fig. 4, fitness of our conjecture, we consider a grid of 38@D00
it can be seen thap(7) decreases exponentially with the points in the regions €@x<1 and 0<y<1. Those escaping
increasing ofr. A detail study shows that it is of the form within a transientr<50 with e=10"* are denoted by black
p(7)~ eexp(er). This is consistent with the form dfi(7)  dots in Fig. 5. In comparing with Fig. 2, the similarity is
above. Two interesting things need to be pointed out aboutbvious.
this PDFp(7): First, it has a quickly decreasing part at small  The second group is the additional oscillationpr),
7. The decreasing rate is universal for all cases with differenbesides the main trend is of an exponential decrease. This
noise strengthe. This means that in addition to the charac- can be seen in Fig. 4. To make it more clear, we plot the
teristic time( 7) there is another time which is not influenced quantity p(7)exp(#({7) instead ofp(7) (see Fig. . Spec-
by changing the noise strength. Our explanation for this phetrum analysis shows that this oscillation is a harmonic of the
nomenon is as follows: In the original system without noise,external quasiperiodic driving. The frequency for the oscil-
there are two groups of points. One is in the basin of thdation shown in Fig. 6 if=0.236=2w wherew=\5—1/2
Milnor SNA. The other goes eventually to infinity. Under the js the frequency of the external driving. Calculations for
influence of a very weak noisejostpoints in the last group other cases with different external driving frequencies like
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FIG. 4. The PDFp(7) of the escape time distribution. The inset FIG. 6. The variablep(7)exp(#{7)) vs 7 (lower); the spectrum
shows the part at smat. of the signalp(7)exp@/{7) (uppe).
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w=+2—1 give similar results. We expect that this addi- influence of noise. This is expected to be common for riddled
tional quasiperiodic oscillating in the PDF of the escape timesystems under influence of nois@) The additional quasi-

distribution is a fingerprint of quasiperiodically driven sys- Periodic oscillation on the PDF of the escape time distribu-
tems. tion should be one of the fingerprints of quasiperiodically

Finally, we would like to outline the main results of the driven systems.
current work: (1) We relate the SNA and Milnor attractor  The author thanks Professor A. Pikovsky for continuous
together in the transcritical blowout bifurcation of a quasip-encouragement and fruitful discussions and the Group Statis-
eriodic torus. To our knowledge, this is different from pre- tical Physics/Theory of Chaos for the hospitality during his
viously reported situations, where the Milnor attractor is astay at Potsdam University where this work was started. He
chaotic one with a riddled basii2) We find that there are also thanks the Alexander von Humboldt Foundation for fi-
two different time scales for the current system under thenancial support during his stay at Potsdam University.
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