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Milnor strange nonchaotic attractor with complex basin of attraction
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~Received 16 October 2000; published 22 February 2001!

The transcritical blowout bifurcation of a quasiperiodic torus on an invariant subspace is studied in this
paper. We found that the strange nonchaotic attractor~SNA! beyond the blowout bifurcation is only a weak
attractor in the sense of Milnor. This is different from the popularly studied case where the Milnor attractor is
a chaotic one with a riddled basin of attraction. Characters of this Milnor SNA and the influence of a random
noise are studied.
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Recently, systems possessing an invariant subspace~ISS!
attracted a great deal of research interest@1–7#. The exis-
tence of an ISS requires that a system has some kin
symmetry. A situation where symmetry can appear natur
is the synchronization of coupled identical units@1#. Syn-
chronization phenomena have been extensively studied in
context of laser dynamics, electronic circuits, chemical a
biological systems, and secure communication.

For systems possessing an ISS, a central question is
transverse stability of the ISS, i.e., whether an orbit start
from the vicinity of the ISS will finally approach it or escap
from it. A quantity measuring this stability is the transver
Lyapunov exponent~TLE!, which measures the growth ra
of transverse perturbations. If the TLE is negative, a tra
verse perturbation will decrease gradually and the ISS
transversely stable. Otherwise, it is unstable. The prob
turns out to be quite complex when there is a chaotic att
tor on the ISS@6# due to the fact that there are infinite num
ber of unstable periodic orbits~UPO’s! embedded in it@8#.
With a change of some parameter, e.g., the coupling stre
for coupled systems, UPO’s become transversely unstab
different values of the parameter. The point where the le
stable UPO becomes unstable is called a riddling bifurca
@7#. The moment when the whole chaotic attractor becom
transversely unstable is called the blowout bifurcation@5#. In
between the riddling and blowout bifurcation, the attrac
on the ISS is only a weak attractor in the sense of Miln
@3,9#, i.e., its strength is zero while it does attract a set
finite measure in the phase space. This is a typical situa
where a Milnor attractor with zero strength is dominant.

In a recent paper@10#, Yalçınkaya and Lai studied a situ
ation where in the ISS there is a quasiperiodic torus inst
of the chaotic attractor. They showed that the loss of
transverse stability of the torus can lead to the birth o
strange nonchaotic attractor~SNA! @11#. SNA’s are attractors
which are geometrically strange, i.e., having a fractal str
ture, while the largest Lyapunov exponent is nonpositi
i.e., having no sensitive dependence on initial conditio
However, no riddled basin of attraction or Milnor attract
was observed prior to the blowout bifurcation in the study
Yalçınkaya and Lai@10#. In this paper, we will go further
along this direction to study thetranscritical blowout bifur-
cation of a quasiperiodic torus, while the case studied
Yalçınkaya and Lai is a period-doubling one. The motivati
for the current work is the following: In previous studie
@1,3–7,10#, the systems used are of much stronger symm
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than necessary for the existence of an ISS. For example
the case of synchronization of coupled units, symmetric c
pling is usually used@1,7# while the use of identical units is
already enough to produce an ISS, independently on the
pling method. In this paper, we address the situation wh
the unnecessary symmetry is released. To illustrate our fi
ing, we use a simple two-dimensional map which posses
an ISS while the whole system is asymmetric with respec
this ISS. Due to this asymmetry, the quasiperiodic torus
the ISS loses its transverse stability through a transcrit
blowout bifurcation. We found that the basin of attraction
the SNA beyond the blowout bifurcation can be penetra
by a dense set of points belonging to the basin of ano
attractor. The SNA is a different type of weak Milnor attra
tor in contrast to the case previously reported@3,7#. Charac-
teristics of the basin of attraction of the Milnor SNA and th
effect of noise are also studied.

We consider the following general class of dynamical s
tems popularly used in the literature@7,10#,

xn115 f ~xn!,
~1!

yn115F~xn ,p!G~yn!,

where f (x) is a map that has a quasiperiodic torus andp is
the control parameter. In previous works@7,10#, the function
G(y) on the right hand side of the second equation in Eq.~1!
is odd, i.e., it has the symmetryG(2y)52G(y). This sym-
metry is appropriate for the symmetric coupling in coupl
systems@7#. Obviously, this symmetry is not necessary f
the presence of the ISSy50. Thus we would like to use a
function G(y) which is neitherevennor odd to release this
symmetry. For simplicity and easiness of illustration, the f
lowing version of Eq.~1! is used:

xn115xn1v ~mod 1!,
~2!

yn115pucos~2 pxn!uyn~11ayn2byn
2!,

wherep, a, andb are positive real constants. For any choi
of the control parameters, we haveyn50 for n.1 if y0
50, i.e.,yn50 is an ISS of the whole system. On this IS
the system possesses a quasiperiodic torus from the c
map f (x)5x1v(mod 1). Throughout this paper, valuesa
50.5 andb50.3 are kept fixed, andp is used as a contro
parameter. Using other values ofa andb can lead to different
©2001 The American Physical Society08-1
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scenarios from the case reported below. Details about th
scenarios will be reported elsewhere.

The TLE of the quasiperiodic torus on the ISS is given
LT5*0

1lnupcos(2px)udx5ln(p/2). The blowout bifurcation
occurs asLT50, which defines the critical value for th
control parameterpc52. It has been argued that beyond t
blowout bifurcation@10#, there is the possibility that the TLE
LT is positive while the largest nontrivial Lyapunov exp
nent Ly of the y subsystem is negative. Results of the n
merical calculation for two Lyapunov exponents in our sy
tem are shown in Fig. 1. The negative largest nontriv
Lyapunov exponentLy , slightly beyond the blowout bifur-
cation, warrants that the attractor is nonchaotic. Follow
the argument in Ref.@11#, we can show that it is also geo
metrically strange: It is obvious that beyond the blowo
bifurcation, the ISSy50 is no longer an attractor, and th
new attraction must include some points off the ISS. On
other hand, points (x50.25,y50) and (x50.75,y50) must
be on the attractor, since the term cos(2px) is zero for these
points. Further forward iterations of these points should a
be on the attractor. Therefore, the attractor contains po
bothoff andon the ISSy50. Due to the ergodicity, two set
of points are dense in thex direction and interwoven togethe
completely. This, together with the continuity of the attra
tor, leads to its strangeness.

The attractor and its basin of attraction withp52.3 is
shown in Fig. 2, where points escaping to infinity are d
noted by black dots while the basin of the SNA is left blan
Due to the fact that the system is asymmetric with respec
the ISS, the SNA resides only at the negative half plane,
the ISS is a part of its boundary. In Ref.@10#, however, the
SNA is on both sides of the ISS. It can be seen that
attractor approaches the ISSy50 from time to time, and has
cusp singularities at a dense set of points. This is consis

FIG. 1. The variation ofLT andLy vs p.
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with our argument that it is a strange attractor. The basin
attraction turns out to be quite complex, and the followi
characters can be seen from the plot: First, the SNA d
attract a set of finite measure in the phase space. The
blank region in the negative half plane containing the attr
tor is part of the basin. Second, a set of points of fin
measure belonging to the basin of the attractor at infin
penetrates the ISS, which is a part of the boundary of
SNA. This can be clearly seen from blowing up a part of t
basin in the vicinity of the ISS the@upper frame in Fig. 2~a!#.
It is expected that a certain perturbation of arbitrarily sm
strength can kick orbits out of the basin of the SNA, i.e., it
a Milnor attractor with zero strength. This is different fro
the previously studied case@3# where a chaotic attractor with
riddled basin is argued to be a Milnor one. Furthermo
when there is a chaotic attractor on the ISS, the differenc
transverse stabilities of UPO’s leads to a riddled basin an
Milnor attractor@6#. For the current case, the invariant me
sure is unique for orbits on the quasiperiodic torus in the IS
Thus the mechanisms leading to the Milnor attractor sho
be different. Third, in the basin of attraction of the SN
there are some bands where all points go finally to the S
~or infinity!. This means that the basin of attraction for t
SNA is not a riddled one in the original sense of Alexand
et al. @3#. Fourth, as the ISS is approached, the scale of ba
becomes smaller and smaller and eventually goes to zer
an arbitrarily small region which contains the ISS, there
always a set of points of finite measure going to infinity.
other words, the degree of mixing of the two basins is inh
mogeneous, and it becomes higher and higher as the IS
approached@see Fig. 2~b!#. Finally, all points in the vicinity
of the ISS will first escape due to the local instability sin
the TLE is now positive. Some of them will be mapped
the SNA in the negative half plane due to the global nonl
earity of the system. This is different from the case of
riddled basin where a set of finite measure converges to
ISS monotonically@12#.

Effect of noise.Since fluctuations and perturbations a
inevitable in real experiments and technical applications,
in general important to study the influence of noise. In o
system, the strength of the Milnor SNA is zero, and the
fect of a perturbation will be significant. In principle, pertu
bations of arbitrarily small strength can kick orbits out of t
basin of the Milnor SNA. However, with a decreasin
t
FIG. 2. ~a! The SNA and the blowup of par
of its basin with p52.3. ~b! The basin at the
positive half plane.
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strength of the perturbation, one should wait longer a
longer times to see the escaping. To characterize the tem
ral behavior of this noise-induced escaping, we first calcu
the quantityN(t), which is the number of orbits left on th
attractor after a transient timet. Usually it has the form
N(t);exp(2t/^t&) where ^t& is the mean value of the es
cape time@13#. The variation of^t& on e is shown in the
inset of Fig. 3. A fit of the data giveŝt&;e21.

We also calculate the probability density function~PDF!
p(t) for the escape time distribution. From the plot in Fig.
it can be seen thatp(t) decreases exponentially with th
increasing oft. A detail study shows that it is of the form
p(t); eexp(et). This is consistent with the form ofN(t)
above. Two interesting things need to be pointed out ab
this PDFp(t): First, it has a quickly decreasing part at sm
t. The decreasing rate is universal for all cases with differ
noise strengthe. This means that in addition to the chara
teristic time^t& there is another time which is not influence
by changing the noise strength. Our explanation for this p
nomenon is as follows: In the original system without noi
there are two groups of points. One is in the basin of
Milnor SNA. The other goes eventually to infinity. Under th
influence of a very weak noise,mostpoints in the last group

FIG. 3. The normalized number of pointsN(t) left after a tran-
sientt. The inset giveŝt&21;e.

FIG. 4. The PDFp(t) of the escape time distribution. The ins
shows the part at smallt.
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cannot ‘‘feel’’ the noise before they escape to infinity@14#.
This contributes to the universal quickly decreasing par
small t in p(t). The first group will initally go to the vicin-
ity of the Milnor SNA, and wander there for a long tim
before escaping. Since the noise strengthe is small, it can
only have a significant influence on orbits entering the reg
uyu,e, say the one in the first group, since the SNA a
proaches the ISS from time to time. This forms the slow
decreasing noise-dependent part at larget. To check the
fitness of our conjecture, we consider a grid of 300033000
points in the regions 0,x,1 and 0,y,1. Those escaping
within a transientt,50 with e51024 are denoted by black
dots in Fig. 5. In comparing with Fig. 2, the similarity i
obvious.

The second group is the additional oscillation inp(t),
besides the main trend is of an exponential decrease.
can be seen in Fig. 4. To make it more clear, we plot
quantity p(t)exp(t/^t&) instead ofp(t) ~see Fig. 6!. Spec-
trum analysis shows that this oscillation is a harmonic of
external quasiperiodic driving. The frequency for the osc
lation shown in Fig. 6 isf .0.236.2v wherev5A521/2
is the frequency of the external driving. Calculations f
other cases with different external driving frequencies l

FIG. 5. Points escaping within a transient oft550 for p52.3
ande51024.

FIG. 6. The variablep(t)exp(t/^t&) vs t ~lower!; the spectrum
of the signalp(t)exp(t/^t&) ~upper!.
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v5A221 give similar results. We expect that this add
tional quasiperiodic oscillating in the PDF of the escape ti
distribution is a fingerprint of quasiperiodically driven sy
tems.

Finally, we would like to outline the main results of th
current work:~1! We relate the SNA and Milnor attracto
together in the transcritical blowout bifurcation of a quas
eriodic torus. To our knowledge, this is different from pr
viously reported situations, where the Milnor attractor is
chaotic one with a riddled basin.~2! We find that there are
two different time scales for the current system under
r-

ke

ni
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influence of noise. This is expected to be common for ridd
systems under influence of noise.~3! The additional quasi-
periodic oscillation on the PDF of the escape time distrib
tion should be one of the fingerprints of quasiperiodica
driven systems.
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@10# T. Yalçınkaya and Y.-C. Lai, Phys. Rev. Lett.77, 5039~1996!;
Phys. Rev. E56, 1623~1997!.

@11# C. Grebogi, E. Ott, S. Pelikan, and J.A. Yorke, Physica D13,
261 ~1984!.

@12# C. Grebogi, S.W. McDonald, E. Ott, and J.A. Yorke, Phy
Lett. A 110, 1 ~1985!.

@13# E. Ott, Chaos in Dynamical Systems~Cambridge University
Press, Cambridge, England, 1993!.

@14# With decreasing noise strength, less and less points in the
group change their final state under the influence of noise
can be seen from the inset of Fig. 4 that the quickly decreas
part of p(t) becomes larger and larger ase goes to zero.
8-4


